Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Soc Mass Spectrom ; 34(4): 525-537, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36971362

RESUMEN

For a generation or more, the mass spectrometry that developed at the frontier of molecular biology was worlds apart from isotope ratio mass spectrometry, a label-free approach done on optimized gas-source magnetic sector instruments. Recent studies show that electrospray-ionization Orbitraps and other mass spectrometers widely used in the life sciences can be fine-tuned for high-precision isotope ratio analysis. Since isotope patterns form everywhere in nature based on well-understood principles, intramolecular isotope measurements allow unique insights into a fascinating range of research topics. This Perspective introduces a wider readership to current topics in stable isotope research with the aim of discussing how soft-ionization mass spectrometry coupled with ultrahigh mass resolution can enable long-envisioned progress. We highlight novel prospects of observing isotopes in intact polar compounds and speculate on future directions of this adventure into the overlapping realms of biology, chemistry, and geology.

2.
J Chromatogr A ; 1639: 461932, 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33535117

RESUMEN

Position-specific isotope analysis by Nuclear Magnetic Resonance spectrometry was employed to study the 13C intramolecular isotopic fractionation associated with the migration of organic substrates through different stationary phases chromatography columns. Liquid chromatography is often used to isolate compounds prior to their isotope analysis and this purification step potentially alters the isotopic composition of target compounds introducing a bias in the later measured data. Moreover, results from liquid chromatography can yield the sorption parameters needed in reactive transport models that predict the transport and fate of organic contaminants to in the environment. The aim of this study was to use intramolecular isotope analysis to study both 13C and 15N isotope effects associated with the elution of paracetamol (acetaminophen) through different stationary phases and to compare them to effects observed previously for vanillin. Results showed very different intramolecular isotope fractionation profiles depending on the chemical structure of the stationary phase. The data also demonstrate that both the amplitude and the distribution of measured isotope effects depend on the nature of the non-covalent interactions involved in the migration process. Results provided by theoretical calculation performed during this study also confirmed the direct link between observed intramolecular isotope fractionation and the nature of involved intermolecular interactions. It is concluded that the nature of the stationary phase through which the substrate passes has a major impact on the intramolecular isotopic composition of organic compounds isolated by chromatography methods..


Asunto(s)
Acetaminofén/análisis , Isótopos de Carbono/química , Cromatografía Liquida/métodos , Isótopos de Nitrógeno/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Celulosa/química , Carbón Orgánico/química , Fraccionamiento Químico , Reproducibilidad de los Resultados , Gel de Sílice/química , Solventes/química
3.
Chemosphere ; 248: 125975, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32007772

RESUMEN

Stable isotopes have been widely used to monitor remediation of environmental contaminants over the last decades. This approach gives a good mechanistic description of natural or assisted degradation of organic pollutants, such as methyl tert-butyl ether (MTBE). Since abiotic degradation seems to be the most promising assisted attenuation method, the isotopic fractionation associated with oxidation and hydrolysis processes need to be further investigated in order to understand better these processes and make their monitoring more efficient. In this study, position-specific isotope effects (PSIEs) associated with permanganate oxidation and acid hydrolysis of MTBE were determined using isotope ratio monitoring by 13C Nuclear Magnetic Resonance Spectrometry (irm-13C NMR) combined with isotope ratio monitoring by Mass Spectrometry (irm-MS). The use of this Position-Specific Isotopic Analysis (PSIA) method makes it possible to observe a specific normal isotope effect (IE) associated with each of these two abiotic degradation mechanisms. The present work demonstrates that the 13C isotope pattern of the main degradation product, tert-butyl alcohol (TBA), depends on the chemical reaction by which it is produced. Furthermore, this study also demonstrates that PSIA at natural abundance can give new insights into reaction mechanisms and that this methodology is very promising for the future of modeling the remediation of organic contaminants.


Asunto(s)
Compuestos de Manganeso/química , Éteres Metílicos/química , Modelos Químicos , Óxidos/química , Contaminantes Químicos del Agua/química , Isótopos de Carbono/análisis , Fraccionamiento Químico/métodos , Hidrólisis , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis , Alcohol terc-Butílico
4.
Planta Med ; 84(12-13): 935-940, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29653457

RESUMEN

Within the food and pharmaceutical industries, there is an increasing legislative requirement for the accurate labeling of the product's origin. A key feature of this is to indicate whether the product is of natural or synthetic origin. With reference to this context, we have investigated three alkaloids commonly exploited for human use: nicotine, atropine, and caffeine. We have measured by 13C nuclear magnetic resonance spectrometry the position-specific distribution of 13C at natural abundance within several samples of each of these target molecules. This technique is well suited to distinguishing between origins, as the distribution of the 13C isotope reflects the primary source of the carbon atoms and the process by which the molecule was (bio)synthesized. Our findings indicate that labeling can be misleading, especially in relation to a supplied compound being labeled as "synthetic" even though its 13C profile indicates a natural origin.


Asunto(s)
Alcaloides/análisis , Espectroscopía de Resonancia Magnética/métodos , Alcaloides/metabolismo , Atropina/metabolismo , Cafeína/metabolismo , Isótopos de Carbono/análisis , Nicotina/metabolismo
5.
Talanta ; 176: 367-373, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28917763

RESUMEN

The enrichment factor (ε) is a common way to express Isotope Effects (IEs) associated with a phenomenon. Many studies determine ε using a Rayleigh-plot, which needs multiple data points. More recent articles describe an alternative method using the Rayleigh equation that allows the determination of ε using only one experimental point, but this method is often subject to controversy. However, a calculation method using two points (one experimental point and one at t0) should lead to the same results because the calculation is derived from the Rayleigh equation. But, it is frequently asked "what is the valid domain of use of this two point calculation?" The primary aim of the present work is a systematic comparison of results obtained with these two methodologies and the determination of the conditions required for the valid calculation of ε. In order to evaluate the efficiency of the two approaches, the expanded uncertainty (U) associated with determining ε has been calculated using experimental data from three published articles. The second objective of the present work is to describe how to determine the expanded uncertainty (U) associated with determining ε. Comparative methodologies using both Rayleigh-plot and two point calculation are detailed and it is clearly demonstrated that calculation of ε using a single data point can give the same result as a Rayleigh-plot provided one strict condition is respected: that the experimental value is measured at a small fraction of unreacted substrate (f < 30%). This study will help stable isotope users to present their results in a more rigorous expression: ε ± U and therefore to define better the significance of an experimental results prior interpretation. Capsule: Enrichment factor can be determined through two different methods and the calculation of associated expanded uncertainty allows checking its significance.

6.
Amino Acids ; 50(1): 201-204, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29188380

RESUMEN

In the article (Romek et al. 2013) we reported the values of δ15N (‰) and δ13C (‰) obtained by.

7.
Arch Biochem Biophys ; 635: 60-65, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29074162

RESUMEN

Many O-methyl and N-methyl groups in natural products are depleted in 13C relative to the rest of the molecule. These methyl groups are derived from the C-1 tetrahydrofolate pool via l-methionine, the principle donor of methyl units. Depletion could occur at a number of steps in the pathway. We have tested the hypothesis that methionine biosynthesis is implicated in this depletion by using a combined experimental and theoretical approach. By using isotope ratio monitoring 13C NMR spectrometry to measure the position-specific distribution of 13C within l-methionine of natural origin, it is shown that the S-methyl group is depleted in 13C by ∼20‰ relative to the other positions in the molecule. In parallel, we have conducted a basic theoretical analysis of the reaction pathway of methionine synthase to assess whether the enzyme cobalamin-independent l-methionine synthase (EC 2.1.1.14)-that catalyzes the synthesis of l-methionine from 5-methyl-tetrahydrofolate and homocysteine-plays a role in causing this depletion. Calculation predicts a strong normal 13C kinetic isotope effect (1.087) associated with this enzyme. Hence, depletion in 13C in the S-methyl of l-methionine during biosynthesis can be identified as an important factor contributing to the general depletion seen in many O-methyl and N-methyl groups of natural products.


Asunto(s)
5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/ultraestructura , Isótopos de Carbono/química , Metionina/química , Nitrógeno/química , Oxígeno/química , Sitios de Unión , Simulación por Computador , Activación Enzimática , Metilación , Modelos Químicos , Modelos Moleculares , Unión Proteica , Especificidad por Sustrato
8.
J Phys Chem B ; 121(23): 5810-5817, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28505458

RESUMEN

The relationship between the strength of the intermolecular interaction in liquid and the position-specific 13C fractionation observed during distillation was investigated. A range of molecules showing different intermolecular interactions in terms of mode and intensity were incorporated in the study. Although it had previously been suggested that during evaporation the diffusive 13C isotope effect in the thin liquid layer interfaced with vapor is not position-specific, herein we show that this is not the case. In particular, the position-specific effect was demonstrated for a series of alcohols. Our hypothesis is that intermolecular interactions in the liquid phase are the source of position-specific 13C fractionation observed on the molecule. A clear trend is observed between the 13C isotope effect of the carbon bearing the heteroatom of chemical function and the relative permittivity, the solvent hydrogen bond acidity, and the solvent hydrogen bond basicity, while only a weak trend was observed when using the 13C content of the whole molecule. Furthermore, two families of products appeared when using the hydrogen bond acidity parameter for the correlation by distinguishing H-acceptor and H-donor molecules from those H-acceptors only. This strongly reinforces the hypothesis of an important role of the 13C positioned close to the interaction center.

9.
Ground Water ; 55(2): 261-267, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27696411

RESUMEN

BIOSCREEN is a well-known simple tool for evaluating the transport of dissolved contaminants in groundwater, ideal for rapid screening and teaching. This work extends the BIOSCREEN model for the calculation of stable isotope ratios in contaminants. A three-dimensional exact solution of the reactive transport from a patch source, accounting for fractionation by first-order decay and/or sorption, is used. The results match those from a previously published isotope model but are much simpler to obtain. Two different isotopes may be computed, and dual isotope plots can be viewed. The dual isotope assessment is a rapidly emerging new approach for identifying process mechanisms in aquifers. Furthermore, deviations of isotope ratios at specific reactive positions with respect to "bulk" ratios in the whole compound can be simulated. This model is named BIOSCREEN-AT-ISO and will be downloadable from the journal homepage.


Asunto(s)
Isótopos de Carbono , Agua Subterránea , Contaminantes Químicos del Agua , Isótopos
10.
Talanta ; 147: 383-9, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26592622

RESUMEN

In forensic environmental investigations the main issue concerns the inference of the original source of the pollutant for determining the liable party. Isotope measurements in geochemistry, combined with complimentary techniques for contaminant identification, have contributed significantly to source determination at polluted sites. In this work we have determined the intramolecular (13)C profiles of several molecules well-known as pollutants. By giving additional analytical parameters, position-specific isotope analysis performed by isotope ratio monitoring by (13)C nuclear magnetic resonance (irm-(13)C NMR) spectrometry gives new information to help in answering the major question: what is the origin of the detected contaminant? We have shown that isotope profiling of the core of a molecule reveals both the raw materials and the process used in its manufacture. It also can reveal processes occurring between the contamination site 'source' and the sampling site. Thus, irm-(13)C NMR is shown to be a very good complement to compound-specific isotope analysis currently performed by mass spectrometry for assessing polluted sites involving substantial spills of pollutant.

11.
Environ Sci Technol ; 49(21): 12782-8, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26443423

RESUMEN

Position-specific isotope effects (PSIEs) have been measured by isotope ratio monitoring (13)C nuclear magnetic resonance spectrometry during the evaporation of 10 liquids of different polarities under 4 evaporation modes (passive evaporation, air-vented evaporation, low pressure evaporation, distillation). The observed effects are used to assess the validity of the Craig-Gordon isotope model for organic liquids. For seven liquids the overall isotope effect (IE) includes a vapor-liquid contribution that is strongly position-specific in polar compounds but less so in apolar compounds and a diffusive IE that is not position-specific, except in the alcohols, ethanol and propan-1-ol. The diffusive IE is diminished under forced evaporation. The position-specific isotope pattern created by liquid-vapor IEs is manifest in five liquids, which have an air-side limitation for volatilization. For the alcohols, undefined processes in the liquid phase create additional PSIEs. Three other liquids with limitations on the liquid side have a lower, highly position-specific, bulk diffusive IE. It is concluded that evaporation of organic pollutants creates unique position-specific isotope patterns that may be used to assess the progress of remediation or natural attenuation of pollution and that the Craig-Gordon isotope model is valid for the volatilization of nonpolar organic liquids with air-side limitation of the volatilization rate.


Asunto(s)
Isótopos de Carbono/análisis , Modelos Teóricos , Acetona/química , Isótopos de Carbono/química , Ambiente , Gases , Heptanos/química , Hidrocarburos Bromados/química , Metanol/química , Éteres Metílicos/química , Modelos Químicos , Compuestos Orgánicos/análisis , Compuestos Orgánicos/química , Presión , Volatilización
12.
J Magn Reson ; 259: 121-5, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26319280

RESUMEN

True quantitative analysis of concentrated samples by (1)H NMR is made very difficult by Radiation Damping. A novel NMR sequence (inspired by the WET NMR sequence and by Outer Volume Saturation methods) is therefore proposed to suppress this phenomenon by reducing the spatial area and consequently the number of spins contributing to the signal detected. The size of the detected volume can be easily chosen in a large range and line shape distortions are avoided thanks to a uniform signal suppression of the outer volume. Composition of a mixture can as a result be determined with very high accuracy (precision and trueness) at the per mille level whatever the concentrations and without hardware modification.

13.
Environ Pollut ; 205: 299-306, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26123718

RESUMEN

Isotopic fractionation of pollutants in terrestrial or aqueous environments is a well-recognized means by which to track different processes during remediation. As a complement to the common practice of measuring the change in isotope ratio for the whole molecule using isotope ratio monitoring by mass spectrometry (irm-MS), position-specific isotope analysis (PSIA) can provide further information that can be exploited to investigate source and remediation of soil and water pollutants. Position-specific fractionation originates from either degradative or partitioning processes. We show that isotope ratio monitoring by (13)C NMR (irm-(13)C NMR) spectrometry can be effectively applied to methyl tert-butylether, toluene, ethanol and trichloroethene to obtain this position-specific data for partitioning. It is found that each compound exhibits characteristic position-specific isotope fractionation patterns, and that these are modulated by the type of evaporative process occurring. Such data should help refine models of how remediation is taking place, hence back-tracking to identify pollutant sources.


Asunto(s)
Fraccionamiento Químico/métodos , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Espectroscopía de Resonancia Magnética , Compuestos Orgánicos Volátiles/análisis , Isótopos de Carbono/análisis , Fraccionamiento Químico/instrumentación , Etanol/análisis , Espectroscopía de Resonancia Magnética/instrumentación , Éteres Metílicos/análisis , Tolueno/análisis , Tricloroetileno/análisis , Volatilización
14.
Chemosphere ; 134: 521-7, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25559176

RESUMEN

We aim at predicting the effect of structure and isotopic substitutions on the equilibrium vapour pressure isotope effect of various organic compounds (alcohols, acids, alkanes, alkenes and aromatics) at intermediate temperatures. We attempt to explore quantitative structure property relationships by using artificial neural networks (ANN); the multi-layer perceptron (MLP) and compare the performances of it with multi-linear regression (MLR). These approaches are based on the relationship between the molecular structure (organic chain, polar functions, type of functions, type of isotope involved) of the organic compounds, and their equilibrium vapour pressure. A data set of 130 equilibrium vapour pressure isotope effects was used: 112 were used in the training set and the remaining 18 were used for the test/validation dataset. Two sets of descriptors were tested, a set with all the descriptors: number of(12)C, (13)C, (16)O, (18)O, (1)H, (2)H, OH functions, OD functions, CO functions, Connolly Solvent Accessible Surface Area (CSA) and temperature and a reduced set of descriptors. The dependent variable (the output) is the natural logarithm of the ratios of vapour pressures (ln R), expressed as light/heavy as in classical literature. Since the database is rather small, the leave-one-out procedure was used to validate both models. Considering higher determination coefficients and lower error values, it is concluded that the multi-layer perceptron provided better results compared to multi-linear regression. The stepwise regression procedure is a useful tool to reduce the number of descriptors. To our knowledge, a Quantitative Structure Property Relationship (QSPR) approach for isotopic studies is novel.


Asunto(s)
Monitoreo del Ambiente/métodos , Isótopos/análisis , Redes Neurales de la Computación , Relación Estructura-Actividad Cuantitativa , Presión de Vapor , Modelos Lineales
15.
Anal Chim Acta ; 846: 1-7, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25220137

RESUMEN

Intramolecular (13)C composition gives access to new information on the (bio) synthetic history of a given molecule. Isotopic (13)C NMR spectrometry provides a general tool for measuring the position-specific (13)C content. As an emerging technique, some aspects of its performance are not yet fully delineated. This paper reports on (i) the conditions required to obtain satisfactory trueness and precision for the determination of the internal (13)C distribution, and (ii) an approach to determining the "absolute" position-specific (13)C content. In relation to (i), a precision of <1% can be obtained whatever the molecule on any spectrometer, once quantitative conditions are met, in particular appropriate proton decoupling efficiency. This performance is a prerequisite to the measurement of isotope fractionation either on the transformed or residual compound when a chemical reaction or process is being studied. The study of the trueness has revealed that the response of the spectrometer depends on the (13)C frequency range of the studied molecule, i.e. the chemical shift range. The "absolute value" and, therefore, the trueness of the (13)C NMR measurements has been assessed on acetic acid and by comparison to the results obtained on the fragments from COOH and CH3 by isotopic mass spectrometry coupled to a pyrolysis device (GC-Py-irm-MS), this technique being the reference method for acetic acid. Of the two NMR spectrometers used in this work, one gave values that corresponded to those obtained by GC-Py-irm-MS (thus, the "true" value) while the other showed a bias, which was dependent to the range covered by the resonance frequencies of the molecule. Therefore, the former can be used directly for studying isotope affiliations, while the latter can only be used directly for comparative data, for example in authenticity studies, but can also be used to obtain the true values by applying appropriate correction factors. The present study assesses several key protocol steps required to enable the determination of position-specific (13)C content by isotopic (13)C NMR, irrespective of the NMR spectrometer: parameters to be adjusted, performance test using [1,2-(13)C2]acetic acid, generation of correction factors.


Asunto(s)
Isótopos de Carbono/análisis , Espectroscopía de Resonancia Magnética/métodos , Ácido Acético/análisis , Calibración
16.
Amino Acids ; 45(6): 1365-72, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24072506

RESUMEN

Since exclusively breast-suckled infants obtain their nutrient only from their mother's milk, it might be anticipated that a correlation will exist between the (15)N/(14)N isotope ratios of amino acids of protein of young infants and those supplied by their mother. The work presented here aimed to determine whether amino nitrogen transfer from human milk to infant hair protein synthesized within the first month of life conserves the maternal isotopic signature or whether post-ingestion fractionation dominates the nitrogen isotope spectrum. The study was conducted at 1 month post-birth on 100 mother-infant pairs. Isotope ratios (15)N/(14)N and (13)C/(12)C were measured using isotope ratio measurement by Mass Spectrometry (irm-MS) for whole maternal milk, and infant hair and (15)N/(14)N ratios were also measured by GC-irm-MS for the N-pivaloyl-O-isopropyl esters of amino acids obtained from the hydrolysis of milk and hair proteins. The δ(15)N and δ(13)C (‰) were found to be significantly higher in infant hair than in breast milk (δ(15)N, P < 0.001; δ(13)C, P < 0.001). Furthermore, the δ(15)N (‰) of individual amino acids in infant hair was also significantly higher than that in maternal milk (P < 0.001). By calculation, the observed shift in isotope ratio was shown not to be accounted for by the amino acid composition of hair and milk proteins, indicating that it is not simply due to differences in the composition in the proteins present. Rather, it would appear that each pool-mother and infant-turns over independently, and that fractionation in infant N-metabolism even in the first month of life dominates over the nutrient N-content.


Asunto(s)
Aminoácidos/análisis , Cabello/química , Proteínas de la Leche/química , Leche Humana/química , Adulto , Femenino , Humanos , Lactante , Isótopos de Nitrógeno/análisis
17.
Rapid Commun Mass Spectrom ; 27(12): 1345-53, 2013 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-23681812

RESUMEN

RATIONALE: In isotope tracer experiments used in nutritional studies, it is frequently desirable both to determine the (15)N/(14)N ratios of target compounds and to quantify these compounds. This report shows how this can be achieved in a single chromatographic run for protein amino acids using an isotope ratio mass spectrometer. METHODS: Protein hydrolysis by acidic digestion was used to release amino acids, which were then derivatized as their N-pivaloyl-O-isopropyl esters. Suitable conditions for sample preparation were established for both hair and milk proteins. The N-pivaloyl-O-isopropyl esters of amino acids were separated by gas chromatography (GC) on a 60 m ZB-WAX column linked via a combustion interface to an isotope ratio mass spectrometer. The (15)N/(14)N ratios were obtained from the m/z 28, 29 and 30 peak intensities and the quantities from the Area All (Vs) integrated peak areas. RESULTS: It is shown from a five-point calibration curve that both parameters can be measured reliably within the range of 1.0 to 2.0 mg/mL for the major amino acids derived from the hydrolysis of human maternal milk or hair samples. The method was validated in terms of inter-day and inter-user repeatability for both parameters for 14 amino acids. The amino acid percentage composition showed a good correlation with literature values. The method was applied to determine the variability in a population of lactating mothers and their infants. CONCLUSIONS: It has been established that δ(15)N values can be simultaneously determined for a complex mixture of amino acids at variable concentrations. It is shown that the percentage composition obtained correlates well with that obtained by calculation from the protein composition or from literature values. This procedure should provide a significant saving in analysis time, especially in those cases where the GC run-time is necessarily long. It allows the satisfactory determination of the variation within a sample population.


Asunto(s)
Aminoácidos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Cabello/química , Leche Humana/química , Isótopos de Nitrógeno/análisis , Proteínas/química , Adulto , Femenino , Humanos , Lactante , Lactancia , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...